Stability and Balance Control

Balance control refers to the location of the CG of an aircraft. This is of primary importance to aircraft stability, which determines safety in flight.

The CG is the point at which the total weight of the aircraft is assumed to be concentrated, and the CG must be located within specific limits for safe flight. Both lateral and longitudinal balance are important, but the prime concern is longitudinal balance; that is, the location of the CG along the longitudinal or lengthwise axis.

An airplane is designed to have stability that allows it to be trimmed so it will maintain straight and level flight with hands off the controls. Longitudinal stability is maintained by ensuring the CG is slightly ahead of the center of lift. This produces a fixed nose-down force independent of the airspeed. This is balanced by a variable nose-up force, which is produced by a downward aerodynamic force on the horizontal tail surfaces that varies directly with the airspeed. [Figure 1-1]

If a rising air current should cause the nose to pitch up, the airplane will slow down and the downward force on the tail will decrease. The weight concentrated at the CG will pull the nose back down. If the nose should drop in flight, the airspeed will increase and the increased downward tail load will bring the nose back up to level flight.

As long as the CG is maintained within the allowable limits for its weight, the airplane will have adequate longitudinal stability and control. If the CG is too far aft, it will be too near the center of lift and the airplane will be unstable, and difficult to recover from a stall. [Figure 1-2] If the unstable airplane should ever enter a spin, the spin could become flat and recovery would be difficult or impossible.

If the CG is too far forward, the downward tail load will have to be increased to maintain level flight. This increased tail load has the same effect as carrying additional weight; the aircraft will have to fly at a higher angle of attack, and drag will increase.

A more serious problem caused by the CG being too far forward is the lack of sufficient elevator authority. At slow takeoff speeds, the elevator might not produce enough nose-up force to rotate and on landing there may not be enough elevator force to flare the airplane. [Figure 1-3] Both takeoff and landing runs will be lengthened if the CG is too far forward.

The basic aircraft design assumes that lateral symmetry exists. For each item of weight added to the left of the centerline of the aircraft (also known as buttock line zero, or BL-0), there is generally an equal weight at a corresponding location on the right.

The lateral balance can be upset by uneven fuel loading or burnoff. The position of the lateral CG is not normally computed for an airplane, but the pilot must be aware of the adverse effects that will result from a laterally unbalanced condition. [Figure 1-4] This is corrected by using the aileron trim tab until enough fuel has been used from the tank on the heavy side to balance the airplane. The deflected trim tab deflects the aileron to produce additional lift on the heavy side, but it also produces additional drag, and the airplane flies inefficiently.

Helicopters are affected by lateral imbalance more than airplanes. If a helicopter is loaded with heavy occupants and fuel on the same side, it could be out of balance enough to make it unsafe to fly. It is also possible that if external loads are carried in such a position to require large lateral displacement of the cyclic control to maintain level flight, the fore-and-aft cyclic control effectiveness will be limited.

Sweptwing airplanes are more critical due to fuel imbalance because as the fuel is used from the outboard tanks, the CG shifts forward, and as it is used from the inboard tanks, the CG shifts aft. [Figure 1-5] For this reason, fuel-use scheduling in sweptwing airplanes operation is critical.

0 comments:

Post a Comment

Blog Archive