Forces in Descents

As in climbs, the forces which act on the aircraft go through definite changes when a descent is entered from straight-and-level flight. For the following example, the aircraft is descending at the same power as used in straight-and-level flight.

As forward pressure is applied to the control yoke to initiate the descent, the AOA is decreased momentarily. Initially, the momentum of the aircraft causes the aircraft to briefly continue along the same flightpath. For this instant, the AOA decreases causing the total lift to decrease. With weight now being greater than lift, the aircraft begins to descend. At the same time, the flightpath goes from level to a descending flightpath. Do not confuse a reduction in lift with the inability to generate sufficient lift to maintain level flight. The flightpath is being manipulated with available thrust in reserve and with the elevator.

To descend at the same airspeed as used in straight-and-level flight, the power must be reduced as the descent is entered. The component of weight acting forward along the flightpath increases as the angle of rate of descent increases and, conversely, decreases as the angle of rate of descent decreases. The component of weight acting forward along the flightpath increases as the angle of rate of descent increases and, conversely, decreases as the angle of rate of descent decreases.

0 comments:

Post a Comment

Blog Archive