TURBINE ENGINE HOT/HUNG START AND COMPRESSOR STALLS


TURBINE ENGINE HOT/HUNG START
A hot start is when the EGT exceeds the safe limit. Hot starts are caused by too much fuel entering the combustion chamber, or insufficient turbine r.p.m. Any time an engine has a hot start, refer to the AFM, POH, or an appropriate maintenance manual for inspection requirements.

If the engine fails to accelerate to the proper speed after ignition or does not accelerate to idle r.p.m., a hung start has occurred. A hung start, may also be called a false start. A hung start may be caused by an insufficient starting power source or fuel control malfunction.

COMPRESSOR STALLS
Compressor blades are small airfoils and are subject to the same aerodynamic principles that apply to any airfoil. A compressor blade has an angle of attack. The angle of attack is a result of inlet air velocity and the compressor's rotational velocity. These two forces combine to form a vector, which defines the airfoil's actual angle of attack to the approaching inlet air.

A compressor stall can be described as an imbalance between the two vector quantities, inlet velocity and compressor rotational speed. Compressor stalls occur when the compressor blades' angle of attack exceeds the critical angle of attack. At this point, smooth airflow is interrupted and turbulence is created with pressure fluctuations. Compressor stalls cause air flowing in the compressor to slow down and stagnate, sometimes reversing direction.

Compressor stalls can be transient and intermittent or steady state and severe. Indications of a transient/intermittent stall are usually an intermittent "bang" as backfire and flow reversal take place. If the stall develops and becomes steady, strong vibration and a loud roar may develop from the continuous flow reversal. Quite often the cockpit gauges will not show a mild or transient stall, but will indicate a developed stall. Typical instrument indications include fluctuations in r.p.m., and an increase in exhaust gas temperature. Most transient stalls are not harmful to the engine and often correct themselves after one or two pulsations. The possibility of engine damage, which may be severe, from a steady state stall is immediate.

Recovery must be accomplished quickly by reducing power, decreasing the airplane's angle of attack and increasing airspeed.

Although all gas turbine engines are subject to compressor stalls, most models have systems that inhibit these stalls. One such system uses variable inlet guide vane (VIGV) and variable stator vanes, which direct the incoming air into the rotor blades at an appropriate angle. The main way to prevent air pressure stalls is to operate the airplane within the parameters established by the manufacturer. If a compressor stall does develop, follow the procedures recommended in the AFM or POH.

0 comments:

Post a Comment

Blog Archive