High altitude without turbo

I was thinking one day about the Bohannon B1. It is basically a modified RV (Harmon rocket something) with very high power to weight ratio and that's it. This plane climbed to something like 14 km.

So consider this (high excess power) case hypothetically:
- Airplane with high aspect ratio (low span loading) with high power engines with high power to weight ratio. Example: Chevrolet LS9 (600 hp).
- If the plane can maintain level flight with minimal power. 35000 ft we have remaining power 0.2 * 600 = 120 hp.
- Diamond flies nicely with 120 hp, actually 90 hp is quite sufficient for it for normal cruise speed. With lower span loading much less should keep the plane level.

So now the naysay would be "nah, LS9 can not sustain 600 hp continuous without breaking". However, 120 hp is hardly 600 hp continuous even if the engine is at full throttle and giving all it can at the altitude. It is still stressed only for the 20 percent power.

Same engine, with single stage turbocharger, it should be possible to extend this quite a bit further. With two stage turbocharger even higher altitude should be possible, 70000 ft might be feasible given that the other challenges that come with the altitude are solved somehow.

So you could have a 1200 hp airplane with 240 hp used at altitude for cruise (in case of twin). This should give a quite generous cruise speed at the altitude given that the props are big enough (disc loading low enough).

KS400 airfoil


Airfoil



KS400 wing at altitude 20 km, speed = 155 kts



Here is the dat-file. Download it here: KS400.dat

Works from Re 500 000 up.

More simulations to follow later.

Blog Archive